Universal ratio of magnetization moments in two-dimensional Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26201
(http://iopscience.iop.org/0305-4470/26/2/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:46

Please note that terms and conditions apply.

Universal ratio of magnetization moments in two-dimensional Ising models

G Kamieniarz \dagger and H W J Blöte
Faculty of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Received 13 April 1992

Abstract

We calculate the universal critical-point ratios of the square of the second and the fourth moment of the magnetization for ferromagnetic Ising models on the square and on the triangular lattices. Periodic boundary conditions are used in accordance with the four-fold and six-fold rotational symmetries of the respective lattices. These results, which are obtained by means of an analysis of finite-size data computed with a transfer-matrix technique, have an accuracy of the order of one millionth. This analysis is also applied to rectangular systems with arbitrary aspect ratios.

1. Introduction

The critical exponents and critical couplings of a number of solvable two-dimensional Ising models are known exactly. There appears to be a wide class of models with the same critical exponents. This class can, by means of the universality hypothesis [1], be generalized to all two-dimensional Ising models with predominantly ferromagnetic, short-range pair interactions. However, it has been realized that, in addition to critical exponents, also certain critical-point amplitudes and ratios thereof are universal [2-4]. Finite-size scaling [5,6] predicts that, for a system with finite size L and magnetization $M=\sum_{i} S_{i}$, the quantity

$$
\begin{equation*}
Q \equiv \lim _{L \rightarrow \infty} Q_{L} \equiv \lim _{L \rightarrow \infty}\left\langle M^{2}\right\rangle_{L}^{2} /\left\langle M^{4}\right\rangle_{L} \tag{1}
\end{equation*}
$$

is universal at the critical point [2], although dependent on the boundary conditions.
The ratio Q is a measure of the shape of the magnetization distribution; for instance, $Q=1 / 3$ for a Gaussian distribution, and $Q=1$ for the long-range ordered state. Its universal value for square, critical Ising systems with toroidal boundary conditions was determined by Bruce [7], and by Burkhardt and Derrida [8] as $Q \approx 0.86$. It is a very useful quantity for the determination of the critical points of models that are not solvable, but can be assumed to belong to the Ising universality class. The critical point of such a model can be estimated by expanding equation (1) about the critical point and by application of fitting procedures to Monte Carlo results for Q_{L} near criticality. First, we describe how this expansion is found. Since

[^0]the moments of the magnetization distribution can be expressed in derivatives of the free energy with respect to the magnetic field, it is useful to start from the scaling relation for the free energy. We consider a system with finite-size parameter L, e.g. a hypercube of size L^{d}, or an elongated $L^{d-1} \times \alpha L$ system, with toroidal boundary conditions. In the vicinity of a renormalization fixed point, the parameters describing the system include the temperature field t, the magnetic ficld h and the finite-size field $1 / L$. Thus, neglecting the irrelevant fields and nonlinearities, the asymptotic finite-size scaling relation for the singular part of the free energy per spin can be written [3, 6] as
\[

$$
\begin{equation*}
f^{(s)}(t, h, 1 / L)=b^{-d} f^{(s)}\left(t b^{y_{T}}, h b^{y_{H}}, b / L\right) \tag{2}
\end{equation*}
$$

\]

where b is the rescaling factor, and y_{T} and y_{H} are the bulk thermal and magnetic critical exponents, respectively. This finite-size scaling relation has been widely applied in numerical studies of critical phenomena and in analysing experimental data, see e.g. [6]. Choosing $b=L$, differentiating k times to h and putting $h=0$ in equation (2) yields

$$
\begin{equation*}
f^{(s), k}(t, 0,1 / L)=L^{k y_{H}-d} f^{(s), k}\left(t L^{y_{T}}, 0,1\right) \tag{3}
\end{equation*}
$$

The scaling function on the right hand side represents a system far from criticality (the finite-size parameter has the value 1) and is therefore assumed analytic, and may be Taylor expanded in $t L^{y_{T}}$. Expressing the magnetization moments $\left\langle M^{k}\right\rangle$ in derivatives of the free energy, neglecting the analytic part, one shows that these moments obey the same scaling behaviour as equation (3). Thus, in the vicinity of the fixed point (L large, t small) the ratio $Q_{L}(t)$ satisfies

$$
\begin{equation*}
Q_{L}(t)=Q+a_{1} t L^{y_{T}}+a_{2} t^{2} L^{2 y_{T}}+\cdots \tag{4}
\end{equation*}
$$

where Q and the α_{i} are (in principle) unknown parameters. Another unknown is the critical temperature T_{c}, which enters into this expression by $t \sim T-T_{c}$. The unknowns can be determined by fitting equation (4) to the Monte Carlo data. If Q is known, one unknown parameter is eliminated, so that the critical point can be obtained more accurately.

The ratio Q depends not only on the type of boundary conditions [8] but also on the aspect ratio and, in the case of anisotropic couplings, on the ratio of the coupling strengths in different directions. Thus we consider a system with a reduced Hamiltonian

$$
\begin{equation*}
-\beta \mathcal{H}=\sum_{x=1}^{L_{x}} \sum_{y=1}^{L_{y}}\left(K_{x} s_{x, y} s_{x+1, y}+K_{y} s_{x, y} s_{x, y+1}+h s_{x, y}\right) \tag{5}
\end{equation*}
$$

with toroidal boundaries: $s_{L_{x}+1, y} \equiv s_{1, y}$ and $s_{x, L_{y}+1} \equiv s_{x, 1}$. In particular we focus on the critical point $h=0, \sinh 2 K_{x} \sinh 2 K_{y}=1$. In the case of isotropic couplings ($K=K_{x}=K_{y}$), the fixed-point Hamiltonian depends only on the finite size $L \equiv L_{y}$ and the aspect ratio $\alpha \equiv L_{x} / L_{y}$. Thus Q is, in this case, a universal function $Q(\alpha)$ of α. For a system with anisotropic couplings, the fixed-point Hamiltonian density will exhibit a similar anisotropy, which is marginal under rescaling. Thus, Q is now given by a different universal function $Q^{\prime}(\alpha)$ of α. However, the anisotropy in the

Hamiltonian may be suppressed by means of an anisotropic scale transformation. In the case that the main directions correspond with the periodic boundaries, this translates in a change to the aspect ratio by a constant factor, say β, so that $L_{x} \rightarrow L_{x}^{\prime}=L_{x} / \beta, L_{y} \rightarrow L_{y}^{\prime}=L_{y}$, and $\alpha \rightarrow \alpha^{\prime}=\alpha / \beta$. By equating $Q^{\prime}(\alpha)$, which may be determined e.g. by Monte Carlo simulations, to $Q(\alpha / \beta)$, the renormalized anisotropy factor β can be solved.

Conformal invariance has been used [8] to calculate Q, but unfortunately this approach is restricted to rather special boundary conditions. On the other hand, the transfer-matrix results of [8] allow a rather accurate determination of Q for square systems with toroidal boundary conditions: graphical extrapolation of the data in table II of [8] yields $Q=0.856 \pm 0.002$. This value was used and quoted e.g. [9] for the determination of the critical line of the simple quadratic Ising model with crossing bonds, and in [10] for the location of the critical point of self-dual Ising models with multi-spin interactions and a magnetic field. It compares well with the Monte Carlo result $Q=0.855 \pm 0.001$ [11]. For very accurate applications, it would be helpful to know Q to an accuracy of more than 3 decimal places.

The aim of this paper is an accurate calculation of Q for the two-dimensional Ising model in a square and in a triangular geometry, as well as in a rectangular geometry with an arbitrary aspect ratio, with periodic boundary conditions in all cases. The second and fourth moments of the magnetization M occurring in (1) are calculated by means of a transfer-matrix technique, in combination with a perturbation expansion [8,12$]$. This avoids numerical differentiation of the partition function, so that highly accurate finite-size data can be obtained. To determine Q for non-rational aspect ratios α, systems (5) with isotropic couplings ($K_{x}^{\prime}=K_{y}$) and a rectangular ($L_{x} \times L_{y}$) geometry are mapped onto a $\alpha L_{x} \times L_{y}$ system with anisotropic couplings, thus also providing an independent check for our direct calculations with isotropic couplings. This procedure can also be used to improve the finite-size convergence. Finite-size data for Q_{L} are then extrapolated by recourse to the power-law dependence inferred from the finite-size scaling analysis of $\left\langle M^{2}\right\rangle_{L}$ and $\left\langle M^{4}\right\rangle_{L}$.

The outline of the paper is as follows. In section 2 we apply finite-size scaling in order to obtain the powers of the system size L, occurring in the expansion of Q_{L}. This knowledge is useful for accurate extrapolations to infinite L. In section 3 we map the rectangular system (5) with isotropic interactions onto a system with anisotropic interactions, in order to enable a calculation of Q for non-rational aspect ratios. Section 4 deals with technical aspects of the transfer-matrix calculations and presents their results. Conclusions concerning the internal consistency, universality, applicability and the large- α limiting behaviour of the results are given in section 5 .

2. Asymptotic finite-size dependence

The finite-size scaling relation equation (2) has to be modified for the two-dimensional Ising model, which is particular in some respects. Firstly, the specific heat singularity has a logarithmic divergence so that (see e.g. [13]) the zero-field free energy should contain explicitly a logarithmic term. Secondly, it has been argued [14] that the leading corrections to scaling are analytic and can be accounted for by nonlinearities of the scaling fields g_{t} and g_{h} related to the thermal field t and the ordering field h. It can be arranged that the renormalization equations, which are nonlinear in t and
h, become linear in variables g_{t} and g_{h} [15]. Thus, under rescaling by a factor of b

$$
\begin{equation*}
g_{t}^{\prime}=b^{y T} g_{t} \quad g_{h}^{\prime}=b^{3 H} g_{h} \tag{6}
\end{equation*}
$$

where the primes denote renormalized quantities. Furthermore, we have for the finite-size field

$$
1 / L \rightarrow 1 / L^{\prime}=b / L
$$

so that for the two-dimensional Ising model (5), which has $y_{T}=1$, the fields g_{t} and $1 / L$ fulfil the same relation. Thus their ratio $g_{t} L$ is invariant under rescaling and, along a trajectory with constant $g_{t} L$ one may combine g_{t} and $1 / L$ into a single field proportional to $1 / L$, keeping in mind that the critical amplitudes may still depend on $g_{t} L$. Along this trajectory the known results [14] for the scaling behaviour of the free energy in terms of g_{t} and g_{h} can be generalized and the corresponding singular part $F^{(s)}$ of the total free energy is thus expressed as

$$
\begin{equation*}
F^{(s)}\left(g_{t}, g_{h}, L^{-1}\right)=A\left(g_{t} L\right) \ln L+B\left(g_{t} L, g_{h} L^{y_{H}}\right) \tag{7}
\end{equation*}
$$

where A and B are unknown amplitudes. The nonlinear fields are expanded as

$$
\begin{align*}
& g_{t}=t+b_{t} h^{2}+c_{t} t^{2}+\cdots \\
& g_{h}=h\left(1+c_{h} t+d_{h} t^{2}+e_{h} h^{2}+\cdots\right) \tag{8}
\end{align*}
$$

The scaling form of the free energy enables the calculation of derivates with respect to the field at the critical point $t=0, h=0$. Including an analytic contribution, we obtain

$$
\begin{align*}
\left(\frac{\partial^{2} F}{\partial h^{2}}\right)_{h=0}= & B^{(0,2)}\left(g_{t} L, 0\right) L^{2 y_{H}}+2 A^{(1)}\left(g_{t} L\right) b_{t} L \ln L \\
& +2 B^{(1,0)}\left(g_{t} L, 0\right) b_{t} L+c L^{2}+\cdots \tag{9}
\end{align*}
$$

where the superscripts of A and B denote derivatives, and

$$
\begin{equation*}
\left(\frac{\partial^{4} F}{\partial h^{4}}\right)_{h=0}=\alpha_{1} L^{4 y_{H}}+\alpha_{2} L^{2 y_{H}}+\alpha_{3} L^{2}+\alpha_{4} L^{2} \ln L+\cdots \tag{10}
\end{equation*}
$$

From the relations

$$
\begin{align*}
& \left\langle M^{2}\right\rangle=\frac{\partial^{2} F}{\partial h^{2}} \tag{11}\\
& \left\langle M^{4}\right\rangle=\left[\frac{\partial^{4} F}{\partial h^{4}}+3\left(\frac{\partial^{2} F}{\partial h^{2}}\right)^{2}\right] \tag{12}
\end{align*}
$$

we obtain the following expansion for Q_{L} up to $L^{3-4 y_{H}}$

$$
\begin{align*}
Q_{L}=Q_{\infty}+ & \beta_{0} L^{2-2 y_{H}}\left(1+\beta_{1} L^{-1}+\beta_{2} L^{2-2 y_{H}}+\beta_{3} L^{-2}+\beta_{4} L^{1-2 y_{H}}+\cdots\right) \tag{13}\\
& +\gamma_{0} L^{1-2 y_{H r}} \ln L\left(1+\gamma_{1} L^{2-2 y_{H}}+\cdots\right)
\end{align*}
$$

The finite-size expansion (13) contains not only a number of algebraic powers, but also logarithmic terms which may complicate the determination of Q from the finite-size results.

3. Anisotropic systems

We consider a square Ising lattice with isotropic couplings $K_{x}=K_{y}=K$ (equation (5)) with L_{y} rows and L_{x} columns. The same scaling relation [3] as before is applicable, but the scaling function, and thereby the universal quantity given by equation (1), will now depend on the aspect ratio $\alpha=L_{x} / L_{y}$.

At distances x, y that are much larger than the lattice unit and much smaller than the system sizes, the spin-spin correlation function decays algebraically at criticality

$$
\begin{equation*}
g_{x}(x)=a_{x} x^{-\eta} \quad g_{y}(y)=a_{y} y^{-\eta} \tag{14}
\end{equation*}
$$

where $a_{x}=a_{y}$, and the critical exponent $\eta=1 / 4$ for the present system. After rescaling in the horizontal direction, $\left(x^{\prime}=x / \beta, y^{\prime}=y\right)$ the aspect ratio has changed into $\alpha^{\prime}=\alpha / \beta$, and the correlations have become anisotropic

$$
\begin{equation*}
g_{x}^{\prime}\left(x^{\prime}\right)=a_{x}^{\prime} x^{\prime-\eta} \quad g_{y}^{\prime}\left(y^{\prime}\right)=a_{y}^{\prime} y^{\prime-\eta} \tag{15}
\end{equation*}
$$

The requirement that these correlations should be proportional to those before rescaling, leads to

$$
\begin{equation*}
a_{x}^{\prime}=a_{y}^{\prime} \beta^{\eta} \tag{16}
\end{equation*}
$$

Our purpose is to find an explicit Hamiltonian that reproduces the asymptotic behaviour of equations (15) and (16). Such a Hamiltonian should renormalize to the same fixed point as the anisotropically rescaled system. For the system described by equation (5), the amplitudes a_{x}, a_{y} are exactly known [16] and it follows that

$$
\begin{equation*}
\sinh 2 K_{x}=\beta=\left(\sinh 2 K_{y}\right)^{-1} \tag{17}
\end{equation*}
$$

More generally, the anisotropic scale reduction by a factor β relates a critical system with couplings K_{x}, K_{y} and aspect ratio α to one described by the following primed parameters:

$$
\begin{align*}
& \sinh 2 K_{x}^{\prime}=\beta \sinh 2 K_{x} \\
& \sinh 2 K_{y}^{\prime}=\beta^{-1} \sinh 2 K_{y}^{\prime} \tag{18}\\
& \alpha^{\prime}=\beta^{-1} \alpha
\end{align*}
$$

This approach is not restricted to rational $\alpha^{\prime}=\alpha / \beta$, so the aspect ratio α can be considered a continuous variable. It enables us also to perform consistency checks on the numerical results. For example, we have verified that the result for Q on a square lattice with $\alpha=2 / \sqrt{3}$ agrees with that on a triangular lattice with rectangular periodic boundary conditions and the same aspect ratio.

4. Numerical technique and results

Our system consists of $L_{x}=\alpha L$ columns containing $L_{y}=L$ spins on a square lattice with periodic boundaries. The spins belonging to the j th column are denoted by $S_{j}=\left(S_{j 1}, S_{j 2}, \cdots, S_{j L_{\mathbf{y}}}\right)$ so that

$$
\begin{equation*}
Z=\sum_{S_{1}, \cdots, S_{L_{x}}} \exp \left[-\beta \mathcal{H}\left(S_{1}, \cdots, S_{L_{x}}\right)\right]=\operatorname{Tr} \mathbf{T}^{L_{x}} \tag{19}
\end{equation*}
$$

where the transfer matrix \mathbf{T} is defined in the $2^{L_{y}}$-dimensional manifold of all configurations of L_{y} spins, $S_{j k}= \pm 1, k=1, \cdots, L_{y}$. The matrix T can be split into a product

$$
\begin{equation*}
\mathbf{T}=\mathbf{T}_{v} \mathbf{T}_{h} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{v}\left(S_{i}, S_{j}\right)=\exp \left[\sum_{k=1}^{L_{y}}\left(K_{y} S_{j k} S_{j, k+1}+h S_{i k}\right)\right] \delta_{S_{i}, S_{j}} \tag{21}
\end{equation*}
$$

is diagonal. The non-diagonal matrix

$$
\begin{equation*}
T_{h}\left(S_{i}, S_{j}\right)=\exp \left(K_{x} \sum_{k=1}^{L_{y}} S_{i k} S_{j k}\right) \tag{22}
\end{equation*}
$$

can be expressed as a product of sparse matrices $[17,18]$ which is convenient for the numerical calculations.

Expanding the partition function in powers of h

$$
\begin{equation*}
Z(h)=\sum_{k=0}^{\infty} \frac{h^{k}}{k!} Z_{k} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{k}=\left(\frac{\partial^{k} Z}{\partial h^{k}}\right)_{h=0} \tag{24}
\end{equation*}
$$

the second and fourth moments of the magnetization can be evaluated from

$$
\left\langle M^{k}\right\rangle_{h=0}=Z_{k} / Z_{0}
$$

Thus, to calculate Q_{L}, it suffices to find the corresponding coefficients in the expansion (23).

The evaluation of the trace in (19) requires a number of successive multiplications of a given vector v by T . Knowing the expansion of the sparse matrices in powers of h, one can perform the multiplication while keeping track of the power of h of each term. As far as the matrix T is concerned, the field dependence is restricted to the diagonal matrix \mathbf{T}_{v}, which can be expanded as

$$
\begin{equation*}
\mathbf{T}_{v}(h)=\sum_{k=0}^{\infty} \frac{h^{k}}{k!} \mathbf{T}_{v}^{(k)}(0) \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{T}_{v}^{(j)}(0)=\mathbf{S}^{j} \mathbf{T}_{v}(0) \\
& S\left(\boldsymbol{S}_{i}, S_{j}\right)=\left(\sum_{k=0}^{L_{y}} S_{i k}\right) \delta_{S_{⿺}, S_{j}} \tag{26}
\end{align*}
$$

Denoting the resulting vector, after j multiplications of \boldsymbol{v} by \mathbf{T}, as $\boldsymbol{v}^{(j)}$

$$
v^{(j)}=T^{j} v
$$

and expressing $\boldsymbol{v}^{(j)}$ in powers of h

$$
\begin{equation*}
\boldsymbol{v}^{(j)}=\sum_{k=0}^{\infty} \frac{h^{k}}{k!} v_{k}^{(j)} \tag{27}
\end{equation*}
$$

one observes that the vector $v^{(j+1)}$, obtained by a new application of \mathbf{T}, can be uniquely expressed in terms of the coefficients present in (25) and (27). This perturbative scheme [8,12] yields more accurate results for Q_{L} than numerical differentiation.

The numerical results for square ($L \times L$) systems are given in table 1 for $L \leqslant 17$. These Q_{L} values coincide with those published by Burkhardt and Derrida [8] $(L \leqslant 14)$ up to all the decimal places quoted.

Table 1. The finite-size ratios Q_{L} for square and triangular lsing models with corresponding periodic boundary conditions. Results are also included for the noninteracting hard square lattice gas in a square geometry; the boundary conditions impose a restriction to even L. The extrapolated values ($L=\infty$) are shown in each of these cases. Estimated numerical uncertainties are shown in parentheses.

L	Square	Tiangular	Hard squares
2	0.8934250058465210	0.8990825688073393	0.7940529802256821
3	0.8775314338580798	0.8784034439377256	
4	0.8707751824028686	0.8705234524955309	0.8540555129441982
5	0.8668715858570995	0.8666488975708098	
6	0.8643555715182825	0.8644485250641061	0.8610658849232626
7	0.8626424601851471	0.8630738250704151	
8	0.8614274655558456	0.8621542384525454	0.8616990527293661
9	0.8605355296031246	0.8615067879049795	
10	0.8598611992304495	0.8610324854817047	0.8612485606280001
11	0.8593384859606425	0.8606738573634970	
12	0.8589246103127896	0.8603956042744663	0.8606429122414773
13	0.8585909197715020	0.8601750329547905	
14	0.8583176526005431	0.8599969918950579	0.8600817555993912
15	0.8580908201071752	0.8598510376853666	
16	0.8579002903997150	0.8597297737920098	0.8596018890764437
17	0.8577385748532215		
\vdots			$0.85625(5)$
∞	$0.856216(1)$	$0.85872528(3)$	

Having thus obtained Q_{L} with an accuracy limited only by the use of doubleprecision floating-point arithmetic, we have extrapolated the data using the asymptotic formula (13) for $L \rightarrow \infty$. We have performed direct fits of this expression, taking into account different numbers of terms. Another procedure is to construct a new series, which eliminates both the successive powers and the logarithmic term from (13), and then performing again power-law extrapolations. A given power L^{-x} is eliminated in the new series defined as

$$
Q_{L}^{\prime}=\left\{(L+1)^{x} Q_{L+1}-L^{x} Q_{L}\right] /\left[(L+1)^{x}-L^{x}\right]
$$

which still satisfies equation (13) with the same constant Q_{∞}, but without the term containing L^{-x}.

We have also applied the alternating ε-algorithm described in [6], where no explicit L-dependence is exploited. The results of this algorithm are consistent with the power-law fits. However, the convergence is less good, and the uncertainties are estimated to be one order of magnitude larger than those in the case of the powerlaw extrapolations.

For the triangular Ising model we employ a transfer matrix T that is very similar to one used for the square lattice in the diagonal direction [19]. The only difference is that an extra diagonal matrix is inserted (see equation (21)), thus accounting for the vertical bonds. Following the same perturbative approach, we have obtained finite-size results for $Q_{L}(L \leqslant 16)$, which are also included in table 1 . We emphasize that, in this case, the toroidal boundary conditions are not imposed in perpendicular directions, but in directions following the triangular symmetry of the lattice. Each site has 6 periodic images at a distance L, separated by angles $\varphi=\pi / 3$. This is in contrast with the square system, which has 4 periodic images at a distance L separated by angles $\varphi=\pi / 2$. Because of their different shapes, one may expect different values of Q in both systems. Indeed, our results confirm that this is the case.

In the last column of table 1 we present finite-size results for the Q-value of the non-interacting hard square lattice gas [20] on square systems with toroida] boundaries. This model is assumed to belong to the Ising universality class. Its critical point is not exactly known, but accurate estimates are available [19-21]. The numerical technique is described in [19]. In this case, the quantity M stands for the staggered density $\sum_{x, y} n_{x, y}(-1)^{x+y}$ where $n_{x, y}=0$ and 1 describe an empty and an occupied site respectively. Only even L valucs are practical in view of the symmetry between the sublattices. Despite the small number of entries and their non-monotonic behaviour, the extrapolated value Q_{∞} agrees quite well with that of the square Ising model.

Finally, results for Q of some rectangular systems with different aspect ratios α are shown in table 2. For $\alpha \leqslant 2$ the calculations used $L \times 3 L$ systems with $L \leqslant 14$ ($L \leqslant 15$ for $\alpha=1$) and couplings according to equation (18) and $\beta=\alpha / 3$. This procedure leads to a better finite-size convergence than that using $L \times L$ systems. As a consequence, the $\alpha=1$ result in table 2 is somewhat more accurate than that in table 1 . For $\alpha>2$ the calculations used $\alpha L \times L$ systems with L at least up to 11 .

We have estimated, using power-law fits in $1 / \alpha$ to the data for large aspect ratios, that

$$
\lim _{\alpha \rightarrow \infty} Q(\alpha)=0.333333(3)
$$

which agrees with the value $1 / 3$ for the Gaussian distribution describing linear systems.

Defining, for the strip geometry, the quantity $[2,8]$

$$
\begin{equation*}
U_{L_{y}}=\lim _{L_{x} \rightarrow \infty}\left[L_{x}\left(1-\frac{1}{3}\left\langle M^{4}\right\rangle_{L_{x}, L_{y}}\left\langle M^{2}\right\rangle_{L_{x}, L_{y}}^{-2}\right)\right] \tag{28}
\end{equation*}
$$

Table 2. Numerical results for the universal functions $Q(\alpha)$ and $\alpha U(\alpha)$ as well as for the coefficients a_{1} in the power series defined in equation (35). Estimated numerical uncertainties in the last decimal place are quoted in parentheses. A result for A_{U} obtained by means of a conformal mapping [8], is shown for comparison as the last entry in the sixth column.

α	$Q(\alpha)$	α	$Q(\alpha)$	α	$\alpha U(\alpha)$	i	a_{i}
1.00	$0.8562157(5)$	10	$0.441345(1)$	10	$2.447330(2)$	0	+0.66965061
1.25	$0.851947(1)$	15	$0.3987253(3)$	15	$2.46004(1)$	1	+0.32377692
1.50	$0.8415515(7)$	20	$0.3800929(2)$	20	$2.46043(1)$	2	-0.15701679
1.75	$0.827049(1)$	30	$0.363112(8)$	30	$2.4603(6)$	3	-0.01878447
2.00	$0.809678(3)$	40	$0.355179(6)$	40	$2.4602(7)$	4	+0.09094136
3.00	$0.728090(3)$	50	$0.350584(5)$	50	$2.4603(9)$	5	-0.11922324
4.00	$0.650069(3)$	60	$0.347586(4)$	60	$2.4603(6)$	6	+0.06618100
5.00	$0.587126(2)$	70	$0.345476(3)$	70	$2.4603(6)$	7	+0.09431846
6.00	$0.539396(2)$	80	$0.343910(3)$	80	$2.4603(7)$	8	-0.12230677
7.00	$0.503811(1)$	90	$0.342702(2)$	90	$2.4604(5)$	9	-0.00847109
8.00	$0.477176(1)$	100	$0.341742(1)$	100	$2.4605(3)$	10	+0.04733566
9.00	$0.456964(1)$	∞	$0.333333(3)$	∞	$2.46044(2)$	11	-0.01018046

the ratio

$$
\begin{equation*}
A_{U}=\lim _{L \rightarrow \infty}\left[L^{-1} U_{L}\right] \tag{29}
\end{equation*}
$$

is also universal. This amplitude reflects that the magnetization distribution of a strip with a finite length deviates from the Gaussian distribution. An interchange of the limits in equations (29) and (28) leads to

$$
\begin{equation*}
A_{U}=\lim _{\alpha \rightarrow \infty} \alpha U(\alpha) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
U(\alpha)=\lim _{L_{x}, L_{y} \rightarrow \infty, L_{x} / L_{y}=\alpha}\left(1-\frac{1}{3}\left\langle M^{4}\right\rangle_{L_{x}, L_{y}}\left\langle M^{2}\right\rangle_{L_{x}, L_{y}}^{-2}\right) \tag{31}
\end{equation*}
$$

In table 2 we report our results for $A_{U}(\alpha)=\alpha U(\alpha)$, and show their consistency with the value A_{U} determined from conformal invariance [8]. The latter value refers to a different set of boundary conditions than those in the present case; therefore we comment on the possibility that A_{U} depends on the boundary conditions in the length direction of the system.

Denoting the boundary weight by $B_{S_{1}, S_{L}}$, the partition function of the model with arbitrary boundaries is
$Z=\sum_{S_{1}, S_{L}=1}^{2^{L} y}\left[\mathrm{~T}^{L-1}\right]_{S_{1}, S_{L}} B_{S_{1}, S_{L}}=\sum_{S_{1}, S_{L}=1}^{2^{L} y}\left[R \Lambda^{L-1} \mathrm{~L}\right]_{S_{1}, S_{L}} B_{S_{1}, S_{L}}$
where $\Lambda(i, j)=\lambda_{i} \delta_{i, j}$ is a diagonal matrix containing the eigenvalues of \mathbf{T}, and \mathbf{R} and \mathbf{L} are matrices built up of the corresponding right and left eigenvectors of
T, respectively, and normalized such that $L R=1$. Ordering the eigenvalues in decreasing absolute value, an elongated system ($L_{x} \gg L_{y}$) will obey

$$
\begin{equation*}
Z_{L_{x}, L_{y}}=\gamma_{1}(h)\left[\lambda_{1}(h)\right]^{L_{x}}+\cdots \tag{33}
\end{equation*}
$$

where the coefficient $\gamma_{1}(h)$ depends only on the elements of \mathbf{B}, \mathbf{R} and \mathbf{L}. The dots represent exponentially small corrections when $L_{x} \rightarrow \infty$. Thus, using $F=\ln Z$ and equations (11) and (12), the quantity U_{L} (equation (28)) can be expressed in the derivatives of $\gamma_{1}(h)$ and $\lambda_{1}(h)$. It is then easily verified that A_{U} is independent of the boundary conditions.

From table 2 we see that $A_{U}(\alpha)$ reaches the asymptotic region much faster than $Q(\alpha) . A_{U}(\alpha)$ reaches the value A_{U} for $\alpha \geqslant 20$, whereas $Q(\alpha)$ deviates significantly from the asymptotic value $\frac{1}{3}$ even for $\alpha=100$. In the absence of boundary terms (i.e., periodic boundaries), $A_{U}(\alpha)$ approaches A_{U} exponentially fast, so that for α large enough we can put

$$
\begin{equation*}
Q(\alpha)=\frac{1}{3}\left(1-A_{U} / \alpha\right)^{-1} . \tag{34}
\end{equation*}
$$

Indeed, $Q(\alpha)$ as calculated from formula (34), agrees with the values quoted in table 2 within $\pm 1 \times 10^{-5}$ for $15 \leqslant \alpha \leqslant 20$, and within the estimated numerical uncertainty for $\alpha \geqslant 20$. Thus equation (34) adequately describes $Q(\alpha)$ for $\alpha \geqslant 15$.

Our results for $Q(\alpha)$ are, within a margin of 3×10^{-5}, reproduced by the expression

$$
\begin{equation*}
Q(\alpha) \approx \sum_{i=0}^{11} a_{i} A^{i} \tag{35}
\end{equation*}
$$

where $A=4 /(\alpha+1 / \alpha)-1$. The coefficients a_{i} were determined by least-squares fits and are given in the last column of table 2. Although we have no compelling reasons to choose the special form of equation (35), we note that it is analytic for positive α and satisfies the symmetry $\alpha \rightarrow \alpha^{-1}$, and that the expansion parameter A satisfies $|A| \leqslant 1$.

The ratio Q is plotted in figure 1 on a semi-logarithmic scale versus the aspect ratio α. The smooth curve represents equation (35).

5. Conclusions

We have numerically calculated the universal ratio Q from the second and fourth moments of the magnetization distribution of the Ising model on square and triangular lattices with toroidal boundary conditions following the lattice symmetry. The value of Q is somewhat different for the two systems; this difference is due to the different boundary conditions and has nothing to do with the lattice structure. The ratio Q was also calculated for toroidal systems with square symmetry of the non-interacting hard-square lattice gas. The result is in agreement with universality.

For boundary conditions with rectangular symmetry, we present a function approximating $Q(\alpha)$ for all aspect ratios α. The numerical results, which were obtained for values of α up to 100 , approach the limit $1 / 3$ when $\alpha \rightarrow \infty$, in a

Figure 1. The universal function $Q(\alpha)$ as a function of the aspect ratios α in the extended interval $1 \leqslant \alpha \leqslant 100$, plotted on a semi-logarithmic scale. The curve represents equation (35) and interpolates through the discrete data shown by the symbol o.
way that correctly reproduces the quantity A_{U} derived in [8]. It is verified that the universal amplitude A_{U} for elongated systems does not depend on the boundary conditions in the length direction.

The high precision of the extrapolated results for Q reflects the accuracy of finite-size data obtained by the perturbation expansion method, and the utilization of finite-size scaling results that restrict the form of the large L-asymptotic behaviour of Q_{L}.

These results for Q are applicable in the Monte Carlo determination of critical points and, in the case of anisotropic models, the determination of renormalized aspect ratios of Ising-like models.

Acknowledgment

It is a pleasure to thank Y T J C Fonk, J R Heringa, Y M M Knops, J M J van Leeuwen and M P Nightingale for many valuable discussions.

References

[1] Kadanoff L P 1966 Physics 2 263; 1971 Critical Phenomena ed M S Green (London: Academic)
[2] Binder K 1981 Z Phys. B 43119
[3] Privman V and Fisher M E 1984 Phys. Rev. B 30322
[4] Blöte H W J and Nightingale M P 1985 Physica 134A 274
[5] Fisher M E 1972 Critical Phenomena (Proc. 51st Enrico Ferni Summer Schooh, Varenna) ed M S Green (London: Academic)
[6] Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic)
[7] Bruce A D 1985 J. Phys. A: Math. Gen 18 L873
[8] Burkhardt T W and Derrida B 1985 Phys. Rev. B 327273
[9] Blöte H W J, Compagner A and Hoogland A 1987 Physica 141A 375
[10] Heringa J R, Blöte H W J and Hoogland A 1989 Phys. Rev. Lett 631546
[11] Nicolaides D and Bruce A D 1988 J. Phys. A: Math. Gen. 21223
[12] Saleur H and Derrida B 1985 J. Physique 461043
[13] Niemeijer Th. and van Leeuwen J M J 1971 Phase Transitions and Critical Phenomena vol 6, ed C Domb and M S Green (London: Academic)
[14] Aharony A and Fisher M E 1983 Phys. Rev: B 274394
[15] Wegner F 1972 Phys. Rev. B 54529
[16] McCoy B M and Wu T T 1973 The Two-dimensional Ising Model (Cambridge, MA: Harvard University Press) ch XI
[17] Nightingale M P 1979 Proc. Kon. Ned Ak. Wet. B 82235
[18] Blöte H W J and Nightingale M P 1982 Physica 112A 405; 1988 Finite-Size Scaling ed \mathbf{J} L Cardy (Amsterdam: North Holland)
[19] Blöte H W J and Wu X N 1990 J. Phys. A: Math. Gen 23 L627
[20] Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22465
[21] Blöte H W J and den Nijs M P M 1988 Phys. Rev: B 371766

[^0]: \dagger Permanent address: Institute of Physics, A Mickiewicz University, Poznań, Poland. Present address: Institute of Theoretical Physics, University of Leuven, Celestijnenlaan 200D, Leuven, Belgium.

