
Universal ratio of magnetization moments in two-dimensional Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 201

(http://iopscience.iop.org/0305-4470/26/2/009)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A! Math. Gen. 26 (1993) 201-212. Printed in the UK 

Universal ratio of magnetization moments in two-dimensional 
Ising models 

G kmieniarzt and H W J Blijte 
Faculty of Applied Physics, Delft University of 'kchnology, Lorentzweg 1, 2628 U Delft, 
The Netherlands 

ReceiMd 13 April 1992 

Abstract. We Calculate the univenal critical.point ratios of the square of the second and 
the fourth moment of the magnetization for ferromagnetic king models on the square 
and on the triangular lattices. Periodic b u n d a y  conditions are used in accordance 
wirh the four-fold and six-fold rotational symmetries of the respective lattices Thesc 
results, which are obtained by means of an analysis of finite-size data computed with a 
transfer-matrix technique, have an accuracy of the order of one millionth. This analysis 
is also applied to rectangular systems with arbitmy aspect ratios. 

1. Intmduction 

The critical exponents and critical couplings of a number of solvable two-dimensional 
Ising models are !mown exactly. There appears to be a wide class of models with the 
Same critical exponents. This class can, by means of the universality hypothesis [l], 
be generalized to all two-dimensional Ising models with predominantly ferromagnetic, 
short-range pair interactions. However, it has been realized that, in addition m critical 
exponents, also certain critical-point amplitudes and ratios thereof are universal [2-4]. 
Finite-size scaling [5,6] predicts that, for a system with finite size L and magnetization 
M = xi Si, the quantity 

Q E  lim Q L  lim ( M Z ) L / ( M 4 ) L  2 L-m L--;o 

is universal at the critical point [2], although dependent on the boundary conditions. 
The ratio Q is a measure of the shape of the magnetization distribution; for 

instance, Q = 1/3 for a Gaussian distribution, and Q = 1 for the long-range 
ordered state. Its universal value for square, critical Ising systems with toroidal 
boundary conditions was determined by Bruce [7], and by Burkhardt and Derrida [SI 
as Q s 0.86. It is a very useful quantity for the determination of the critical points of 
models that are not solvable, but can be assumed to belong to the king universality 
class. The critical point of such a model can be estimated by expanding equation 
(1) about the critical point and by application of fitting procedures to Monte Carlo 
results for QL near criticality. First, we describe how this expansion is found. Since 

t Permanent addresc Institute of Physics, A Mickiewiez University, Poznali, Poland. Present addres: 
Institute of IheoretiCal Physics, Univenity of Leuven. Celeslijnenlaan ?KID, Leuven, Belgium. 

ON54470/93/0u)u)l flZS07.50 @ 1993 IOP Publishing U d  201 



202 

the moments of the magnetization distribution can be expressed in derivatives of the 
free energy with respect to the magnetic field, it is useful to start from the scaling 
relation for the bee energy. We consider a system with mite-size parameter L,  e.g. 
a hypercube of size L d ,  or an elongated Ld-I x aL system, with toroidal boundary 
conditions. In the vicinity of a renormalization fixed point, the parameters describing 
the system include the temperature field 1, thc magnetic field h and the finite-size 
field 1/L. Thus, neglecting the irrclcvant fields and nonlineanties, the asymptotic 
finite-size scaling relation for the singular part of the free energy per spin can he 
written [3,6] as 

G Kamienian and H W J BILifc 

f ' " ' ( t ,  h ,  1/L)  = b - d f ( B ) (  tbyT,  h b Y H ,  b / L )  (2) 

where b is the rescaling factor, and yr and yH are the bulk thermal and magnetic 
critical exponents, respectively. This finite-size scaling relation has been widely applied 
in numerical studies of critical phenomena and in analysing experimental data, see 
e.g. [6]. Choosing b = L,  differentiating k timcs to h and putting h = 0 in equation 
(2) yields 

f ' " ' . k ( t , O , I / L )  = L k Y H - d f r s ) s k ( t L Y T , o ,  1). (3) 

The scaling function on the right hand side represents a system far from criticality (the 
finite-size parameter has the value 1) and is therefore assumed analytic, and may be 
Taylor expanded in tLYT. Ekprcssing the magnetization moments (Mk) in derivatives 
of the free energy, neglecting the analytic part, one shows that these moments obey 
the same scaling behaviour as equation (3). Thus, in the vicinity of the fixed point 
( L  large, 1 small) the ratio Q L ( t )  satisfies 

Q L ( t )  = Q + al tLYT + a2t2L2YT f .. . (4) 

where Q and the a;  are (in principle) unknown parameters. Another unknown is 
the critical temperature T,, which enters into this expression by t - T - T,. The 
unknowns can be determined by fitting equation (4) to the Monte Carlo data. If 
Q is known, one unknown parameter is eliminated, so that the critical point can be 
obtained more accurately. 

The ratio Q depends not only on the type of boundaly conditions [SI but also 
on the aspect ratio and, in the case of anisotropic couplings, on the ratio of the 
coupling strengths in different directions. Thus we consider a system with a reduced 
Hamiltonian 

L. L. 

- with toroidal boundaries: s ~ , ~ ~ , , ,  = sl,y and s , , ~ , + ~  z s ~ , ~ .  In particular we focus 
on the critical point h = 0, sinh2K,sinh2IiY = 1. In the case of isotropic couplings 
(IC = IC= = Icy), the fixed-point Hamiltonian depends only on the finite size L L ,  
and the aspect ratio a L , /Ly .  Thus Q is, in this case, a universal function Q ( a )  
of a. For a system with anisotropic couplings, the fmed-point Hamiltonian density 
will exhibit a similar anisotropy, which is marginal under rescaling. Thus, Q is now 
given by a different universal function &'(a)  of a. However, the anisotropy in the 
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Hamiltonian may be suppressed by means of an anisotropic scale transformation. 
In the case that the main directions correspond with the periodic boundaries, this 
translates in a change to the aspect ratio by a constant factor, say 0, so that 
L ,  -t L’, = L , / p ,  L ,  - = L,, and a - a‘ = a/@ By equating &‘(a), which 
may be determined e.g. by Monte Carlo simulations, to &(a/@), the renormalized 
anisotropy factor p can be solved. 

Conformal invariance has been used [SI to calculate Q, but unfortunately this 
approach is restricted to rather special boundary conditions. On the other hand, the 
transfer-matrix results of [SI allow a rather accurate determination of Q for square 
systems with toroidal boundary conditions: graphical extrapolation of the data in 
table I1 of [SI yields Q = 0.856 rt 0.002. This value was used and quoted e.g. [9] for 
the determination of the critical line of the simple quadratic Ising model with crossing 
bonds, and in [lo] for the location of the critical point of self-dual Ising models with 
multi-spin interactions and a magnetic field. It compares well with the Monte Carlo 
result Q = 0.855 i 0.001 [ll]. For very accurate applications, it would be helpful to 
know Q to an accuracy of more than 3 decimal places. 

The aim of this paper is an accurate calculation of Q for the two-dimensional king 
model in a square and in a triangular geometry, as well as in a rectangular geometry 
with an arbitrary aspect ratio, with periodic boundary conditions in all cases. The 
second and fourth moments of the magnetization A4 occurring in (1) are calculated by 
means of a transfer-matrix technique, in combination with a perturbation expansion 
[S, 121. This avoids numerical differentiation of the partition function, so that highly 
accurate finite-size data can be obtained. ?b determine Q for non-rational aspect 
ratios a, systems (5) with isotropic couplings (A’= = Ky) and a rectangular ( L ,  x Ly) 
geometry are mapped onto a aL, x L ,  system with anisotropic couplings, thus also 
providing an independent check for our direct calculations with isotropic couplings. 
This procedure can also be used to improve the finite-size convergence. Finite-size 
data for QL are then extrapolated by recourse to the power-law dependence inferred 
from the finite-size scaling analysis of 

The outline of the paper is as follows. In section 2 we apply finite-size scaling 
in order to obtain the powers of the system size L, occurring in the expansion of 
QL. This howledge is useful for accurate extrapolations to infinite L. In section 3 
we map the rectangular system (5) with isotropic interactions onto a system with 
anisotropic interactions, in order to enable a calculation of Q for non-rational aspect 
ratios. Section 4 deals with technical aspects of the transfer-matrix calculations and 
presents their results. Conclusions concerning the internal consistency, universality, 
applicability and the large-a limiting behaviour of the results are given in section 5. 

and ( M 4 ) L .  

2. Asymptotic finite-size dependence 

The finite-size scaling relation equation (2) has to be modified for the two-dimensional 
king model, which is particular in some respects. Firstly, the specific heat singularity 
has a logarithmic divergence so that (sec e.g. [13]) the zero-field free energy should 
contain explicitly a logarithmic term. Secondly, it has been argued [I41 that the 
leading corrections to scaling are analytic and can be accounted for by nonlinearities 
of the scaling fields gt and g h  related to the thermal field 1 and the ordering field h.  
It can be arranged that the renormalization equations, which are nonlinear in t and 
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h ,  become linear in mriables g, and g,> [15]. Thus, under rescaling by a factor of b 

G Kaniieniarz and H W J BIore 

gi = bYTg, gj, = b - Q H g h  (6) 

where the primes denote renormalized quantities. Furthermore, we have for the 
finite-size field 

1 / L  - l / L ' =  b / L  

so that for the two-dimensional king model (S),  which has yT = 1, the fields gt and 
1 / L  fulfil the same relation. Thus their ratio gt L is invariant under rescaling and, 
along a trajectoly with constant gt L one may combine gt and 1/L into a single field 
proportional to 1 / L ,  keeping in mind that the critical amplitudes may still depend 
on g t L .  Along this trajectory the known results [14] for the scaling behaviour of the 
free energy in terms of gt and gh can be generalized and the corresponding singular 
part F(") of the total free energy is thus expressed as 

F ( S ) ( g , , g h r L - ' ) = . 4 ( y , L ) l n L f  B ( g , L , g h L Y H )  (7) 

where A and B are unknown amplitudes. The nonlinear fields are expanded as 

The scaling form of the frcc energy enables the calculation of derivates with 
Including an analytic respect to the field at the critical point t = 0, h = 0. 

contribution, we obtain 

(g) = B ( U , 2 ) ( g , L , 0 ) L Z y H  + 2 A ( ' ) ( g , L ) b , L l n  L 
h=U 

+ 28("") (g ,  L ,  O)b, L + c L z  + . . . (9) 
where the superscripts of A and B dcnote derivatives, and 

From the relations 

we obtain the following expansion for QL up to L3-4YH 

Z - z Y H ( 1  + PI L-' + & L Z - 2 Y H  + p , L - z  + P,L'-2YH + . . .) 
(13) 

Qr. = Q, t POL 
~~~ 

t 7 " L  '-'Y, In ~ ( 1 +  7, LZ-*Y" + , . .) . 
The finite-size expansion (13) contains not only a number of algebraic powers, but also 
logarithmic terms which may complicate the determination of Q from the finite-size 
results. 
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3. Anisotropic systems 

We consider a square king lattice with isotropic couplings IC, = IC,, = K 
(equation (5)) with L ,  rows and L, columns. The Same scaling relation [3] as 
before is applicable, but the scaling function, and thereby the universal quantity given 
by equation (l), will now depend on the aspect ratio a = L,/L,. 

At distances 2, y that are much larger than the lattice unit and much smaller than 
the system sizes, the spin-spin correlation function decays algebraically at criticality 

g,(r) = a$-" SY(Y) = a,y-* (14) 

where a, = ay,  and the critical exponent 7 = 1/4 for the present system. After 
rescaling in the horizontal direction, (z' = x / p ,  y' = y) the aspect ratio has changed 
into a' = a / p ,  and the correlations have become anisotropic 

(15) 
I , - q  gL(+') = a:+'-q g:(Y') =a,y . 

The requirement that these correlations should be proportional to those before 
rescaling, leads to 

a: = u p ' ,  . (16) 
Our purpose is to fmd an explicit Hamiltonian that reproduces the asymptotic 

behaviour of equations (15) and (16). Such a Hamiltonian should renormalize to the 
same fixed point as the anisotropically rescaled system. For the system described by 
equation (9, the amplitudes al,ay are exactly known [16] and it follows that 

sinhZIi, = p = (sinh2Ii,)- ' .  (17) 

More generally, the anisotropic scale reduction by a factor p relates a critical system 
with couplings Kc, ICy and aspect ratio a to one described by the following primed 
parameters: 

This approach is not restricted to rational a' = a / p ,  so the aspect ratio Q can be 
considered a continuous variable. It enables us also to perform consistency checks 
on the numerical results. For example, we have verified that the result for Q on a 
square lattice with a = '2/& agrees with that on a triangular lattice with rectangular 
periodic boundary conditions and the same aspect ratio. 

4. Numerical technique and results 

Our system consists of L ,  = aL columns containing L ,  = L spins on a square 
lattice with periodic boundaries. The spins bclonging to the j t h  column are denoted 
by S, =(S,1,Sj2,...,S,L,) so that 

Z =  exp[-p 'H(s , , . . . , sLc)1 = . r t ~ ~ z  (19) 
S,,  
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where the transfer matrix T is defined in the 2L’dimensional manifold of all 
configurations of L, spins, S;k = i ~ l .  k = 1,. , . , L,. The matrix T can be split into 
a product 

G Kamieniarz and H W J BIotc 

T = T,T, 

where 

is diagonal. The non-diagonal matrix 

can be expressed as a product of sparse matrices [17, IS] which is convenient for the 
numerical calculations. 

Expanding the partition function in powers of h 

where 

the second and fourth moments of the magnetization can be evaluated from 

( M k ) h = u  = zk/zO. 
Thus, to calculate QL, it sufkes to find the corresponding coefficients in the 
expansion (23). 

The evaluation of the trace in (19) requires a number of successive multiplications 
of a given vector U by T .  Knowing the expansion of the sparse matrices in powers of 
h, one can perform the multiplication~while keeping track of the power of h of each 
term. As far as the matrix T is concerned, the field dependence is restricted to the 
diagonal matrix T , ,  which can be expanded as 

where 

TV)(O) = SjT,(O) 
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Denoting the resulting vector, after j multiplications of U by T, as v(j) 

one observes that the vector &t1), obtained by a new application of T, can be 
uniquely expressed in terms of the coefficients present in (U) and (27). This 
perturbative scheme [8,12] yields more accurate results for Q L  than numerical 
differentia tion. 

The numerical results for square (L x L )  systems are given in table 1 for 
L < 17. These QL values coincide with those published by Burkhardt and Derrida 
[SI (15 < 14) up to all the decimal places quoted. 

Table 1. The finite-size ratios Q L  for q u a r e  and triangular lsing models with 
corresponding periodic boundary conditions. Rmulu are also included for the non- 
interacting hard square laltice gas in a square geometry; lhe boundary conditions impose 
a resuiction lo wen L .  The cxtrapolated values ( L  = m) are shown in each of these 
cases. Estimated numerical uncertainties are shown in parentheses. 

L Square 

2 0.893425 W58465210 
3 0.877 531 433 8580798 
4 0.870775 182402 8486 
5 0.866871 5858570995 
6 0.864 355 571 518 2825 
7 0.862 642 460 185 1471 

Triangular Hard squares 

0.899082 5688073393 0.794052980ZS6821 
0.878 403 443 937 7256 
0.870523 452 4955309 0.854055 512944 1982 
0.866 648 897570 8098 
0.8644485250641061 0.8610h58849232626 
0.863 073 625070 4151 

8 0.861 4274655558456 0.862 IY23845254S4 0.5616990527293661 
9 0.861 506 787 904 9795 

10 0.859861 1992304495 O.bh10324854817017 0.S6l248S60628Owl 
I I  0.8593384859606425 0.8606738573h34970 
12 0.858 924 610 312 7896 0.8h0 395 ho4 274 4663 0.860642 912 241 4773 
13 0.860 175 032 954 7905 
14 0.858 317 652 6M Se31 0.859 996 991 895 0579 0.860081 755 599 3912 
15 0.858W0820107 1752 0.8598510376853666 
16 0.8579w2903997150 0.8597297737920098 0.859601 8890764137 
17 

0 860535 529 M 3  1216 

0.858 590 919 171 SO20 

0.857 738 571 853 2215 

M 0.856216111 0.85872528I3I 0.856 2515) 

Having thus obtained QL with an accuracy limited only by the use of double- 
precision floating-point arithmetic, we have cxtrapolated the data using the asymptotic 
formula (13) for L - 00. We have performed direct fits of this expression, taking 
into account different numbers of terms. Another procedure is to construct a new 
series, which eliminates both the successive powers and the logarithmic term from 
(13), and then performing again power-law extrapolations. A given power L-' is 
eliminated in the new series defined as 
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Q;. = [(L 4- l)'Q,+, - L C " & , l / [ ( L  + 1)' - L=l 

which still satisfies equation (13) with the same constant Q,, but without the term 
containing L-". 

We have also applied the alternating €-algorithm described in [6], where no explicit 
Ldependence is exploited. The results of this algorithm are consistent with the 
power-law tits. However, the convergence is less good, and the uncertainties are 
estimated to be one order of magnitude larger than those in the case of the power- 
law extrapolations. 

For the triangular Ising model we employ a transfer matrix T that is very similar 
to one used for the square lattice in the diagonal direction [19]. The only difference 
is that an extra diagonal matrix is inserted (see equation (21)), thus accounting for 
the vertical bonds. Following the same perturbative approach, we have obtained 
finitesize results for Q L  ( L  4 16), which are also included in table 1. We emphasize 
that, in this case, the toroidal boundary conditions are not imposed in perpendicular 
directions, but in directions following the triangular symmetry of the lattice. Each 
site has 6 periodic images at a distance L ,  separated by angles p = n/3 .  This 
is in contrast with the square system, which has 4 periodic images at a distance L 
separated by angles 1p = ~ / 2 .  Because of their different shapes, ,one may expect 
different values of Q in both systems. Indeed, our results confirm that this is the 
case. 

In the last column of table 1 we prescnt finite-size results for the Q-value of 
the non-interacting hard square lattice gas [20] on square systems with toroidal 
boundaries. This model is assumed to belong to the Ising universality class. Its 
critical point is not exactly known, but accurate estimates are available 119-21). The 
numerical technique is described in [19]. In this case, the quantity A4 stands for 
the staggered density E,,, nZ,,(-l)"fY where n2,, = 0 and 1 describe an empty 
and an occupied site rcspectively. Only even L valucs are practical in new of the 
symmetry between the sublattices. Despite the small number of entries and their 
non-monotonic behaviour, thc extrapolated value Q, agrees quite well with that of 
the square king model. 

Finally, results for Q of some rectangular systems with different aspect ratios cy 

are shown in table 2. For cy < 2 the calculations used L x 3L systems with L < 14 
( L  < 15 for cy = 1) and couplings according to equation (18) and p = a/3. This 
procedure leads to a better finite-size convergence than that using L x L systems. As 
a consequence, the oi = 1 result in table 2 is somewhat more accurate than that in 
table 1. For cy > 2 the calculations used cy L x L systems with L at least up to 11. 

We have estimated, using power-law fits in l/oi to the data for large aspect ratios, 
that 

lim & ( a )  = 0.333333(3) 
0-m 

which agrees with the wlue 1/3 for the Gaussian distribution describing linear 
systems. 

Defining, for the strip geometry, thc quantity [2,8] 
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Table 2. Numerical mulls for the universal [unctions Q ( a )  and a U ( o )  as well as for 
the mefficienls a, in the power series dcfincd in equation (35). Estimated numerical 
uncenaintie in the lasf decimal place are quoted in parentheses. A m u l l  for A” 
obtained by means of a mnformal mapping [8], is shown [or mmparison as the last 
ently in the sixth column. 

1.00 0.8562157(5) 
1.25 0.8.51 947(1) 
1.50 0.841 5515(7) 
1.75 0.827019(1) 
2.00 0.809678(3) 
3.00 0.728090(3) 
4.00 0.650069(3) 

6.00 0.539 396(2) 

8.00 0.477 176( 1) 
9.00 0.456964(1) 

5.00 0.5871Zh(Z) 

7.w 0.~03811(1) 

a Q(a) OI .YU(a) 
10 0.441315(1) 10 2.447330(2) 
15 0.3987253(3) 15 2.46001(1) 
20 0.3800929(2) 20 2.46043(1) 
30 0.363112(8) 30 2.4603(6) 
40 0.355179(6) 40 2.4602(7) 
50 0.350 584(5) 50 2.4603(9) 
69 0.347586(4) 60 2.4603(6) 
70 0.345476(3) 70 2.4603(6) 
80 0.343910(3) 80 2.4603(7) 
90 0.342702(2) 90 2.4604(5) 

100 0.341 742(1) 100 2.4605(3) 
m 0.333333(3) m 2.46044(2) 

i a,  

0 +0.6h9h5061 
1 +0.32377692 
2 -0.15701679 
3 -0.01878447 
4 +0.09094136 
5 -0.11922324 
6 +O.ffi618tw 
7 +0.09431846 
8 -0.12236577 
9 -0.00847109 

10 +0.04733566 
1 1  -0.01018046 

the ratio 

A - lim [ L - ’ U L ]  - L-m 

is also universal. This amplitude reflects that the magnetization distribution of a strip 
with a finite length deviates from the Gaussian distribution. An interchange of the 
limits in equations (29) and (28) leads to 

where 

In table 2 we report our results for A,( a) = aU( a), and show their consistency 
with the value A, determined from conformal invariance [SI. The latter value refers 
to a different set of boundary conditions than those in the present case; therefore 
we comment on the possibility that A ,  dcpends on the boundary conditions in the 
length direction of the system. 

Denoting the boundary weight by BSI3,,, the partition function of the model 
with arbitrary boundaries is 

where A ( i , j )  = is a diagonal matrix containing the eigenvalues of T, and 
R and L are matrices built up of the corrcsponding right and left eigenvectors of 
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T, respectively, and normalized such that LR = 1. Ordering the eigenvalues in 
decreasing absolute value, an elongated system ( L ,  >> Ly)  will obey 

G Kantieniarz and H W I BIole 

ZL=,LV = 71(h)[X,(h)IL= + ’ . .  (33) 

where the coefficient y l ( h )  depends only on the elements of 6, R and 1. The dots 
represent exponentially small corrections when L ,  i 03. Thus, using F = In Z and 
equations (11) and (12), the quantity UL (equation (28)) can be expressed in the 
derivatives of r l ( h )  and X,(h). It is then easily verified that A, is independent of 
the boundary conditions. 

From table 2 we see that A u ( a )  reaches the asymptotic region much faster than 
Q(a).  A,(a)  reaches the value A, for a 2 20, whereas Q(a) deviates significantly 
from the asymptotic value even for a = 100. In the absence of boundary terms 
(i.e., periodic boundaries), & ( a )  approaches A, exponentially fast, so that for a 
large enough we can put 

&(a)  = f ( 1 -  +/a) - ’ .  (34) 

Indeed, & ( a )  as calculated from formula (34), agrees with the values quoted in 
table 2 within f l  x lo-’ for 15 < a < 20, and within the estimated numerical 
uncertainty for a 2 20. Thus equation (34) adequately describes & ( a )  for a 2 15. 

reproduced by the 
expression 

Our results for Q(a)  are, within a margin of 3 x 

11 

Q ( a ) = X a j A ’  (35) 
i = U  

where A = 4/(a + l / a )  - 1. The coellicicnts ai were dctermined by least-squares 
fits and are given in the last column of table 2. Although we have no compelling 
reasons to choose the special form of equation (39 ,  we note that it is analytic for 
positive a and satisfies the symmetry a i a-l, and that the expansion parameter A 
satisfies IAl 6 1. 

The ratio Q is plotted in figure 1 on a semi-logarithmic scale versus the aspect 
ratio a. The smooth curve represents equation (35). 

5. Conclusions 

We have numerically calculated the universal ratio Q from the second and fourth 
moments of the magnetization distribution of the king model on square and triangular 
lattices with toroidal boundary conditions following the lattice symmetry. The value 
of Q is somewhat different for the two systems; this difference is due to the different 
boundary conditions and has nothing to do with the lattice structure. The ratio Q 
was also calculated for toroidal systems with square symmetry of the non-interacting 
hard-square lattice gas. The result is in agreement with universality. 

For boundary conditions with rectangular symmetry, we present a function 
approximating Q ( a )  for all aspect ratios a. The numerical results, which were 
obtained for values of a up to 100, approach the limit 1/3 when a i 03, in a 
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Figure 1. The universal function Q ( Q )  as a function 
of the aspect mtios 01 in the extended interval 
1 < Q Q 100, plolted on a semi-logarithmic sale. 
The curve represents equation (35) and interpolates 
lhrough the discrete dam shown by the symbol 0. 

way that correctly reproduces the quantity Au derived in [SI. It is verified that the 
universal amplitude A, for elongated systems does not depend on the boundary 
conditions in the length direction. 

The high precision of the extrapolated results for Q reRecrs the accuracy of 
finite-size data obtained by the perturbation expansion method, and the utilization of 
finite-size scaling results that restrict the form of the large L-asymptotic behaviour of 
QL. 

These results for Q are applicable in the Monte Carlo determination of critical 
points and, in the case of anisotropic models, the determination of renormalized 
aspect ratios of Jsing-like models. 
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