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The Netherlands
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Abstract. 'We calculate the universal critical-point ratics of the square of the second and
the fourth moment of the magnetization for ferromagnetic Ising models on the square
and on the triangular lattices. Pericdic boundary conditions are used in accordance
with the four-fold and six-fold rotational symmetries of the respective lattices. These
results, which are obtained by means of an analysis of finite-size data compuied with a
transfer-matrix technique, have an accuracy of the order of one millionth. This analysis
is also applied to rectangular systems with arbitrary aspect ratios.

1. Introduction

The critical exponents and critical couplings of a number of solvable two-dimensional
Ising models are known exactly. There appears to be a wide class of models with the
same critical exponents. This class can, by means of the universality hypothesis [1],
be generalized to all two-dimensional Ising models with predominantly ferromagnetic,
short-range pair interactions. However, it has been realized that, in addition to critical
exponents, also certain critical-point amplitudes and ratios thereof are universal [2-4].
Finite-size scaling [5, 6] predicts that, for a system with finite size L and magnetization
M =3, S;, the quantity

@= Jim Qu= fim (M%), [ (M), o

is universal at the critical point [2], although dependent on the boundary conditions.

The ratio @ is a measure of the shape of the magnetization distribution; for
instance, @ = 1/3 for a Gaussian distribution, and Q@ = 1 for the long-range
ordered state. Its universal value for square, critical Ising systems with toroidal
boundary conditions was determined by Bruce [7], and by Burkhardt and Derrida [8]
as @ = 0.86. It is a very useful quantity for the determination of the critical points of
models that are not solvable, but can be assumed to belong to the Ising universality
class. The critical point of such a model can be estimated by expanding equation
(1) about the critical point and by application of fitting procedures to Monte Carlo
results for @ near criticality. First, we describe how this expansion is found. Since
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the moments of the magnetization distribution can be expressed in derivatives of the
free energy with respect to the magnetic field, it is useful to start from the scaling
relation for the free energy. We consider a system with finite-size parameter L, e.g.
a hypercube of size L?, or an elongated L4~! x oL system, with toroidal boundary
conditions. In the vicinity of a renormalization fixed point, the parameters describing
the system include the temperature field ¢, the magnetic ficld A and the finite-size
field 1/L. Thus, neglecting the irrclevant ficlds and nonlinearities, the asymptotic
finite-size scaling relation for the singular part of the free enmergy per spin can be
written [3, 6] as

FO(t,h, 1/ L) = b4 fO(1b¥™ hb¥# b/ L) @

where b is the rescaling factor, and y, and y, are the bulk thermal and magnetic
critical exponents, respectively. This finite-size scaling relation has been widely applied
in numerical studies of critical phenomena and in analysing experimental data, see
e.g. [6]. Choosing b = L, differentiating & timcs to A and putting 2 = 0 in equation
(2) yields

f{S}‘k(tsOv I/L) = kaﬂ_dftsl,k(t‘[‘yr?o’ 1) (3)

The scaling function on the right hand side represents a system far from criticality (the
finite-size parameter has the value 1) and is therefore assumed analytic, and may be
Taylor expanded in t L¥7. Expressing the magnetization moments {(M*) in derivatives
of the free energy, neglecting the analytic part, one shows that these moments obey
the same scaling behaviour as equation (3). Thus, in the vicinity of the fixed point
(L large, t small) the ratio Q(2) satisfies

QL) = Q+ aytL¥ + o, LW 4 ... @)

where @ and the a, are (in principle) unknown parameters. Another unknown is
the critical temperature T, which enters into this expression by t ~ T — T,. The
unknowns can be determined by (itting equation {4) to the Monte Carlo data. If
@ is known, one unknown parameter is eliminated, so that the critical point can be
obtained more accurately.

The ratio @ depends not only on the type of boundary conditions [8] but also
on the aspect ratio and, in the case of anisotropic couplings, on the ratio of the
coupling strengths in different directions. Thus we consider a system with a reduced
Hamiltonian

Lr L!l
- 8K = ZZ(AISHI Sapity +Ky5x,y3m,y+1+h~5x,y) (5)

z=ty=1

with toroidal boundaries: s; ., =s;, and s_ | ., = s, ;. In particular we focus
on the critical point h = 0, sinh 2K _ sinh 21\y ='1"In the case of 1sotrop1c couplings
(K = K, = K,), the fixed-point Ham:ltonmn depends only on the finite size L = L

and the aspect ratio a=L,fL,. Thus Q is, in this case, a universal function Q(«)
of a. For a system with anisotropic couplings, the fixed-point Hamiltonian density
will exhibit a similar anisotropy, which is marginal under rescaling. Thus, Q is now
given by a different universal function Q'(a)} of o. However, the anisotropy in the
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Hamiitontan may be suppressed by means of an anisotropic scale transformation.
In the case that the main directions correspond with the periodic boundaries, this
translates in a change to the aspect ratio by a constant factor, say G, so that
L,—-L,=L,/B L, — L, =1L, and a — o = afB. By equating Q'( ), which
may be determined e.g. by Monte Carlo simulations, to Q{«a/3), the renormalized
anisotropy factor 3 can be solved.

Conformal invariance has been used [8] to calculate ), but unfortunately this
approach is restricted to rather special boundary conditions. On the other hand, the
transfer-matrix results of [8] allow a rather accurate determination of @ for square
systems with toroidal boundary conditions: graphical extrapolation of the data in
table II of [8] yields Q = 0.856 £ 0.002. This value was used and quoted e.g. [9] for
the determination of the critical line of the simple quadratic Ising model with crossing
bonds, and in [10] for the location of the critical point of self-dual Ising models with
multi-spin interactions and a magnetic field, It compares well with the Monte Carlo
result Q = 0.855 £ 0.001 [11]. For very accurate applications, it would be heipful to
lmow @ to an accuracy of more than 3 decimal places.

The aim of this paper is an accurate calculation of @ for the two-dimensional Ising
model in a square and in a triangular geometry, as well as in a rectanguiar geometry
with an arbitrary aspect ratio, with periodic boundary conditions in all cases. The
second and fourth moments of the magnetization M occurring in (1) are calculated by
means of a transfer-matrix technique, in combination with a perturbation expansion
[8, 12]. This avoids numerical differentiation of the partition function, so that highly
accurate finite-size data can be obtained. To determine @ for non-rational aspect
ratios «, systems (5) with isotropic couplings (K, = I, ) and a rectangular (L x L )
geometry are mapped onto a L, x L, system with anisotropic couplings, thus also
providing an independent check for our direct calculations with isotropic couplings.
This procedure can also be used to improve the finite-size convergence, Finite-size
data for @, are then extrapolated by recourse to the power-law dependence inferred
from the finite-size scaling analysis of (M?), and (M%) ,.

The outline of the paper is as follows. In section 2 we apply finite-size scaling
in order to obtain the powers of the system size L, occurring in the expansion of
Q. This knowledge is useful for accurate extrapolations to infinite L. In section 3
we map the rectangular system (5) with isotropic interactions onto a system with
anisotropic interactions, in order to enable a calculation of @ for non-rational aspect
ratios. Section 4 deals with technical aspects of the transfer-matrix calculations and
presents their results. Conclusions concerning the internal consistency, universality,
applicability and the large-o limiting behaviour of the results are given in section 3.

2. Asymptotic finite-size dependence

The finite-size scaling relation equation (2) has to be modified for the two-dimensional
Ising model, which is particular in some respects. Firstly, the specific heat singularity
has a logarithmic divergence so that (see e.g. [13]) the zero-field free energy should
contain explicitly a logarithmic term. Secondly, it has been argued [14] that the
leading corrections to scaling are analytic and can be accounted for by nonlinearities
of the scaling fields g, and g; related to the thermal field ¢ and the ordering field h.
It can be arranged that the renormalization cquations, which are nonlinear in ¢ and
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h, become linear in variables g, and g, [15]). Thus, under rescaling by a factor of b
g =bTg, g, =0b"g, ©)

where the primes denote renormalized quantities. Furthermore, we have for the
finite-size field

1/L —1/L' =b/L

so that for the two-dimensional Ising model (5), which has yp = 1, the fields g, and
1/L fulfil the same relation. Thus their ratio g, L is invariant under rescaling and,
along a trajectory with constant g, L one may combine g, and 1/ L into a single field
proportional to 1/L, keeping in mind that the critical amplitudes may still depend
on g, L. Along this trajectory the known results [14] for the scaling behaviour of the
free energy in terms of g, and g, can be generalized and the corresponding singular
part F(s) of the total free energy is thus expressed as

F)g,, 00, L7") = A(g, L) In L + B(g,L. g, L¥¥) 7
where A and B are unknown amplitudes. The nonlinear fields are expanded as

g, =t+ bR e tt ...

g = (14 eyt +dyt? + e h” 4 --2).

The scaling form of the free cnergy enables the calculation of derivates with
respect to the field at the critical point ¢ = 0, h = 0. Including an analytic
contribution, we obtain

(&)

FF (0.2) 2 (1)
95N BOD(g L)L 4 241(g,L)b,LIn L
h=0

dh?
+2BU0 (g, L,0)b, L+ cL?+ .- (%)
where the superscripts of A and B denote derivatives, and
Al ayu 2y 2 2
Fht = o LY + o LY oLt oy L*In L+ .. (1)
h=t
From the relations
=2 an
8h
&'F 32F ’
4
(M%) [ e td am) ] (12)

we obtain the following expansion for @, up to L3-%#

QL= Qo+ ByL¥ (1 4+ L7 4 B L¥%n 4 BL7% 4 B L1 0m )

13
+ AL in L1 4+ 4 LT 40, )

The finite-size expansion (13) contains not only a number of algebraic powers, but also

logarithmic terms which may complicate the determination of @ from the finite-size
results.
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3. Anisotropic systems

We consider a square Ising lattice with isotropic couplings K, = K, = K
(equation (5)) with L, rows and L_ columns. The same scaling relation [3] as
before is applicable, but the scaling function, and thereby the universal quantity given
by equation (1), will now depend on the aspect ratio « = L,/ L,.

At distances x, y that are much larger than the lattice unit and much smaller than
the system sizes, the spin-spin correlation function decays algebraically at criticality

g-(z) = azz™” 9,(v) = a,y7" (14)

where a, = a,, and the critical exponent n = 1/4 for the present system. After
rescaling in the horizontal direction, (z’ = =/, y' = y) the aspect ratio has changed
into o = &/, and the correlations have become anisotropic

ge(a') = ala’" 9,(¥)=aly'". (15)

The requirement that these correlations should be proportional to those before
rescaling, leads to

ay = a,3". (16)

Our purpose is t0 find an explicit Hamiltonian that reproduces the asymptotic
behaviour of equations (15) and (16). Such a Hamiltonian should renormalize to the
same fixed point as the anisotropically rescaled system. For the system described by
equation (5), the amplitudes ¢, a, are exactly known [16] and it follows that

sinh2J, = 8 = (sinh2K,,)~". (17)

More generally, the anisotropic scale reduction by a factor 8 relates a critical system
with couplings K';, I, and aspect ratio a to one described by the following primed
parameters:

sinh2K7, = Bsinh 217,
. S -1 -
sinh 2K, = 8~ sinh 2K, (18}
o =7 e,
This approach is not restricted to rational o/ = «/3, so the aspect ratio o« can be
considered a continuous variable. It enables us also to perform consistency checks
on the pumerical results. For example, we have verified that the result for Q on a

square lattice with o = 2/+/3 agrees with that on a triangular lattice with rectanguiar
periodic boundary conditions and the same aspect ratio.

4. Numerical technique and results

Our system consists of L, = al columns containing L, = L spins on a square
lattice with periodic boundaries. The spins belonging to the jth column are denoted
by S_? = (Sjl? sz,‘ Tty Sij) so that

Z= Y exp[-BH(S,- 5, )] =Tr Tt (19)
'Slv ";SL,_-
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where the transfer matrix T is defined in the 2Lv-dimensional manifold of all
configurations of L, spins, S;; = 1, & =1,-.-, L. The matrix T can be split into
a product

T=T,T, 20
where
Ly
T,(5:,5;) =exp | > (K, 5,501 + 85 | b5, 5, 1)
k=1

is diagonal. The non-diagonal matrix

L’H
Th(5: ;) = exp( K, 3 54.Sj) 22)
k=1
can be expressed as a product of sparse matrices [17, 18] which is convenient for the
numerical calculations.
Expanding the partition function in powers of h

o0 hk
Z(h) =Z-Tzk - 23
k=0 '
where
8%z
o= (ahk);,:u @)

the second and fourth moments of the magnetization can be evaluated from
(M*y, _ = 2,/2,.

Thus, to calculate @, it suflices to find the corresponding coefficients in the
expansion (23).

The evaluation of the trace in (19) requires a number of successive multiplications
of a given vector v by T. Knowing the expansion of the sparse matrices in powers of
h, one can perform the multiplication while keeping track of the power of h of each
term. As far as the matrix T is concerned, the field dependence is restricted to the
diagonal matrix T, which can be expanded as

T,(R) =3 7 T(0) (25)

|
k=0 k!

where

TYH0) = 8/ T,(0)

Llﬂ'
5(8;,8;) = (Z Su.-) bs,,s,"
k=0

(26)
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Denoting the resulting vector, after j multiplications of v by T, as v/

vl = Tiy

and expressing v(/) in powers of h

hk

-

gk

0

207

@7

one observes that the vector »/+1) obtained by a new application of T, can be
uniquely expressed in terms of the coefficients present in (25) and (27).
perturbative scheme [8,12] yields more accurate results for Q, than numerical

differentiation.

This

The numerical results for square (L x L) systems are given in table 1 for
L £ 17. These Q; values coincide with those published by Burkhardt and Derrida
[8] (L < 14) up to all the decimal places quoted.

Table 1.
corresponding periodic boundary conditions.

The finite-size ratios Q7 for square and triangular Ising models with
Results are also included for the non-

interacting hard square lattice gas in a square geometry; the boundary conditions impase
a restriction to even L. The extrapolated values (L = co) are shown in each of these
cases. Estimated numerical uncertainties are shown in parentheses.

L Square Triangular Hard squares
2 0.893 4250058465210  0.899082 5688073393  (,794 052 980 225 6821
3 0.8775314338580798  (.B7B403 4439377256
4 0.870775 182402 8686  0.8705234524955309  0.854 055 512944 1982
5 0.866 871 5858570995 (.866 648 897 570 8098
6 0.864 355571 5182825 0.8364 448 525064 1061  0.861 065 884 923 2626
7 0.862 6424460 185 1471 0.863 073 8250704151
8 0.861 427 465555 8456  0.862 1542384525454  0.861 699 052 729 3661
9 0.860535 529603 1246  0.861 506 787 904 9795
1o 0.359 861 1992304495  0.8610324854817047  0.361 248 560 628 0001
i1 0.859338 4859606425 0.860 673 857 363 4970
12 0.858924 6103127896  0.860395604274 4663  0.860642 9122414773
13 0.858 5009197715020  0.860 175032 954 7905
14 0.858317652600 5431  0.859996 9918950579  0.860 081 755 599 3912
15 0.858090 8201071752 0.859 851 (37 685 3666
16 0.8579002903997150  0.8597297737920098  0.859 601 389 (76 4437
17 0.857 738 574853 2215
=) 0.856 216(1} 0.858725 28(3) 0.856 25(5)

Having thus obtained @, with an accuracy limited only by the usc of double-

precision floating-point arithmetic, we have extrapolated the data using the asymptotic
formula (13) for L — oo. We have performed direct fits of this expression, taking
into account different numbers of terms. Another procedure is to construct a new
series, which ¢liminates both the successive powers and the logarithmic term from
(13), and then performing again power-law extrapolations. A given power L™* is
eliminated in the new series defined as
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QL ={(L+17Qry1— L7Q N/ [(L+ 1) - L7]

which still satisfies equation (13) with the same constant Q,, but without the term
containing L~*.

We have also applied the alternating -algorithm described in [6], where no explicit
L-dependence is exploited. The results of this algorithm are consistent with the
power-law fits. However, the convergence is less good, and the uncertainties are
estimated to be one order of magnitude larger than those in the case of the power-
law extrapolations.

For the triangular Ising model we employ a transfer matrix T that is very similar
to one used for the square lattice in the diagonal direction [19]. The only difference
is that an extra diagonal matrix is inserted (see equation (21)), thus accounting for
the vertical bonds. Following the same perturbative approach, we have obtained
finite-size results for Q (L < 16), which are also included in table 1. We emphasize
that, in this case, the toroidal boundary conditions are not imposed in perpendicular
directions, but in directions following the triangular symmetry of the lattice. Each
site has 6 periodic images at a distance L, separated by angles ¢ = = /3. This
is in contrast with the square system, which has 4 periodic images at a distance L
separated by angles ¢ = v /2. Because of their diffcrent shapes, one may expect
different values of Q in both systems. Indeed, our results confirm that this is the
case.

In the last column of table 1 we present finite-size results for the Q-value of
the non-interacting hard square lattice gas [20] on square systems with toroidal
boundaries. This model is assumed to bejong to the Ising universality class. Its
critical point is not exactly known, but accurate estimates are available [19-21). The
numerical technique is described in [19]. In this case, the quantity M stands for
the staggered density >, n, (—1)**¥ where n, , = 0 and 1 describe an empty
and an occupied site respectively. Only even L values are practical in view of the
symmetry between the sublattices. Despite the small number of entries and their
non-monotonic behaviour, the extrapolated value @, agrees quite well with that of
the square Ising model.

Finally, results for @ of some rectangular systems with different aspect ratios o
are shown in table 2. For o £ 2 the calculations used L x 3L systems with L £ 14
(L €15 for @ = 1) and couplings according to equation (18) and 8 = «/3. This
procedure leads to a better finite-size convergence than that using L x L systems. As
a consequence, the o = 1 result in table 2 is somewhat more accurate than that in
table 1. For o > 2 the calculations used oL x L systems with L at least up to 11.

We have estimated, using power-law fits in 1/« to the data for large aspect ratios,
that

Jim Qo) =0333333(3)

which agrecs with the vajue 1/3 for the Gaussian distribution describing flinear
systems.
Defining, for the strip geometry, the quantity [2, 8]

U, = L,lriinm[Lr(l - % (A"’(J')L,,L, <Mz>:,_r.y)] (28)
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Table 2. Numerical results for the universal functions Q{«) and oU(w) as well as for
the coefficients a, in the power series defined in equation (35). Estimated numerical
uncertainties in the iast decimal place are quoted in parentheses. A result for Ay
obtained by means of a conformal mapping [8], is shown for comparison as the last
entry in the sixth column.

o Q(a) o Q) P al(a) i ai

1.00  0.856215%(5) 10 0.441345(1) 10 2.447330(2) 0 +40.66965061
125 0.851947(1) 15 0.3987253(3) 15 2.45004(1) 1 4032377692
1.50  0.8415515(7) 20 0.3800929(2) 20 2.46043(1) 2 01570169
175 0.827049(1) 30 0.363112(8) 30 2.4603(6) 3 —0.018784 47
2.00  0.809678(3) 40 0.355179(6) 40 246027 4 +0.090941 36
3.00  0.728090(3) 50  0.350584(5) 50 2.4603(9) 5 -0.11922324
4,00  0.650069(3) 60 0.347586(4) 60 2.4603(6) & +0.066 18100
500  0.587126(2) 70 0.345476(3) 70 2.4603(6) 7 +40.09431846
6.00  0.539395(2) 80 0.343910(3) 80 2.4603(7) 8 012230677
7.00  0.503811(1) 90 0.342702(2) 90 2.4604(5) 9 —0.00847109
8.00  0.477176(1) 100 6.341742(1) 100 2.4605(3) 10 +0.04733566
9.00  0.456964(1) ) 0.333 333(3) oo 2.460 44(2) 11 —0.01018046
the ratio

T -1
Ay = Jim [L71U] (29)

is also universal. This amplitude reflects that the magnetization distribution of a strip
with a finite Jength deviates from the Gaussian distribution. An interchange of the
limits in equations (29) and (28) leads to

Ay = lim aU(a) )

where

Ula) = lim (=3, (MHE ). (31)

zy Ly=o0, Ly fLy=e

In table 2 we report our results for A, (o) = al/(a), and show their consistency
with the value A;, determined from conformal invariance [8]. The latter value refers
to a different set of boundary conditions than those in the present case; therefore
we comment on the possibility that A,, depends on the boundary conditions in the
length direction of the system.

Denoting the boundary weight by Bg o , the partition function of the model
with arbitrary boundaries is

2Ly by
Z= Z {TL-I]ShSL BS].SL = Z [RAL_]L]ShSL BS],SL (32)
5,5 =1 5,85:.=1

where A(i,j) = A6, ; i a diagonal matrix containing the eigenvalues of T, and
R and L are matrices built up of the corresponding right and left eigenvectors of
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T, respectively, and normalized such that LR = 1. Ordering the eigenvalues in
decreasing absolute value, an elongated system (L, >> L,) will obey

Zpen, = nlR)[A(A)]E= 4 (33)

where the coefficient +,(2) depends only on the elements of B, R and L. The dots
represent exponentially small corrections when L, — oo, Thus, using ¥ =In Z and
equations (11) and (12), the quantity U, (equation (28)) can be expressed in the
derivatives of v,(h) and A\ {h). Tt is then easily verified that A, is independent of
the boundary conditions.

From table 2 we see that A, («) reaches the asymptotic region much faster than
Q(a). Ay (o) reaches the value Ay, for @ > 20, whereas Q{«) deviates significantly
from the asymptotic value 1 even for o = 100. In the absence of boundary terms
(i.e., periodic boundaries), A, () approaches A, exponentially fast, so that for
large enough we can put

Qla)=1-Ay/a)!. (34)

Indeed, Q(«) as calculated from formula (34), agrees with the values quoted in
table 2 within 1 x 10~% for 15 € o < 20, and within the estimated numerical
uncertainty for o 2> 20. Thus equation (34) adequately describes Q(e) for o 2 15.

Our results for Q(c«) are, within a margin of 3 x 1075, reproduced by the
expression

11
Qa)= Y a; A’ (35)
i=0

where A = 4/(a 4 1/a) ~ 1. The coeflicients a; were determined by least-squares
fits and are given in the last column of table 2. Although we have no compelling
reasons to choose the special form of equation (35), we note that it is analytic for
positive « and satisfies the symmetry o — «~!, and that the expansion parameter A
satisfies |A| < 1.

The ratio @ is plotted in figure 1 on a semi-logarithmic scale versus the aspect
ratio a. The smooth curve represents equation (35).

5. Conclusions

We have numerically calculated the universal ratio @ from the second and fourth
moments of the magnetization distribution of the Ising model on square and triangular
lattices with toroidal boundary conditions following the lattice symmetry. The value
of Q is somewhat different for the two systems; this difference is due to the different
boundary conditions and has nothing to do with the lattice structure. The ratio Q
was also calculated for toroidal systems with square symmetry of the non-interacting
hard-square lattice gas. The result is in agreement with universality.

For boundary conditions with rectangular symmetry, we present a function
approximating Q(«) for all aspect ratios «. The numerical results, which were
obtained for values of o up to 100, approach the limit 1/3 when oo — oo, in a
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DY v . e . ;

Figure 1. The universal function Q{a) as a function
of ihe aspect ratios « in the exiended interval
1 € a g 100, plotted on a semi-logarithmic scale.
0 L . : The curve represents equation (35) and interpolates

t 10 100 through the discrete data shown by the symbol .

way that correctly reproduces the quantity A, derived in [8]. It is verified that the
universal amplitude A, for elongated systems does not depend on the boundary
conditions in the length direction.

The high precision of the extrapolated results for Q reflects the accuracy of
finite-size data obtained by the perturbation expansion method, and the utilization of
finite-size scaling results that restrict the form of the large L-asymptotic behaviour of
Q.

These results for @ are applicable in the Monte Carlo determination of critical
points and, in the case of anisotropic models, the determination of renormalized
aspect ratios of Ising-like models.
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